Sākums > Statistika > Optimal Sample Allocation in the Presence of Non-response

Optimal Sample Allocation in the Presence of Non-response

Assume stratified simple random sampling design. Population is split in H strata. We have fixed sample size n. The aim is to find optimal sample allocation n_1, n_2, \ldots, n_h, \ldots, n_H, where \sum_{h=1}^H n_h = n and V \left( \hat{Y} \right) is minimised.

There is some population information available. The population size by strata: N_h, population standard deviation of y_i variable: S_h, and expected response rate in each stratum: R_h.

Optimal sample allocation in the presence of non-response can be computed as n_h = n \cdot \frac{\frac{N_h S_h}{\sqrt{R_h}}}{\sum_{j=1}^H \frac{N_j S_j}{\sqrt{R_j}}}.

I do not have a proof but I have done some numerical calculations to test the optimality of the allocation. The R code of the calculations is available here.

The presented allocation is equal to the well known Neyman allocation [1] in case we have the same response expectation in each stratum.

[1] Neyman, Jerzy (1937). Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 236 (767): 333–380

  1. 18.08.2016 plkst. 11:57

    Pārāk gudra doma priekš manis .

  1. No trackbacks yet.


Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Mainīt )

Google+ photo

You are commenting using your Google+ account. Log Out /  Mainīt )

Twitter picture

You are commenting using your Twitter account. Log Out /  Mainīt )

Facebook photo

You are commenting using your Facebook account. Log Out /  Mainīt )


Connecting to %s

%d bloggers like this: